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Notable quotes

We need to know more about human speech processing
and and natural speech variation

–Sadaoki Furui (ASRU 2009)

This is so true!
–Jont Allen

Question your assumptions:

Elephant in the room:
Human CV speech is not variable.

CV speech is not redundant.

Why we don’t know anything about the topic?
$ spent on basic speech research →0,
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Outline of talk
1. Intro + Objectives (5 mins)

The research goal is to
Identify the elemental HSR events in
Example consonants

2. Historical overview (5 mins Σ10)
Rayleigh (1910) to Shannon (1948)

3. Methods (15 mins Σ25)
-Information Theory; -Signal processing
-Psychophysics; -Articulation Index;

4. Results (30 mins Σ55)
Confusions; Primes and Morphs;
Speech Modifications; Conflicting cues

5. Summary + Conclusions (5 mins Σ60)
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I – Introduction (5 mins)
Statement of the problem:

A fundamental understand the Human Speech code

Short-term Goal:
Identify the key features in individual CV utterances

-Plosives (e.g., /p, t, k/ and /b, d, g/)
-Fricatives (e.g., /T, S, Ù, s, h, f/ and /z, Z, v, D/)
-With vowels /o, E, I/

Applications:
Reduce variability in ASR at frontend
Hearing Aids, Cochlear Implants
Smart Telcom products
TTS (Text to speech)
Intelligibility modifications (Robustness problem)

Speech enhancement in noise
Allen/ASRU ‘09 – December 14, 2009 – p. 4



Objective
To develop rigorous procedures for analyzing and
modifying speech in noise

To identify perceptual features, denoted events

Φ ΨLISTENER

PHYSICAL PERCEPTUAL

ACOUSTIC FEATURES EVENTS

Based on two basic measures:
AI-Gram (speech audibility measure)
Confusion matrix (CV discrimination measure)

We will show that onset and durational timing cues form
the consonant events
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II – Historical HSR Studies (5 mins)
Lord Rayleigh’s 1908 and George Campbell 1910

First electronic articulation experiments

Harvey Fletcher’s 1921 Articulation Index AI
Accurate predictions of nonsense syllable scores
French and Steinberg 1947 first publish AI

Shannon The thoeory of Information 1948+
G.A. Miller, Heise and Lichten Entropy H 1951
G.A. Miller & Nicely CM Ph|s(SNR) 1955

Context:
G.A. Miller 1951 Language and communication
G.A. Miller 1962 5-word Grammer ≡ 4 dB of SNR
Boothroyd JASA 1968; Boothroyd & Nittrouer 1988
Bronkhorst et al. JASA 1993
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Speech feature research

1910-1980: Bell Labs

1940-1960: Haskins Lab

1960-1990: MIT

1980-2010: ASR at AT&T, IBM, BBN, University
research

Cochlear research

1910-1950: Bell Labs

1960-2010: MIT + Harvard HSTB

1980-2010: NIH funded University research
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Speech feature research

1910-1980: Bell Labs

1940-1960: Haskins Lab Synthetic speech

1960-1990: MIT Consonant features unknown

1980-2010: ASR at AT&T, IBM, BBN, University
research Not designed to be robustness to noise

Cochlear research

1910-1950: Bell Labs

1960-2010: MIT + Harvard HSTB

1980-2010: NIH funded University research
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III – Methods (15 mins)
Information Theory IT ≡ Articulation index AI

Confusion matrix CM scores: Ph|s(SNR)

AI to model mean phone errors
∑

h Ph|s(SNR)

Psychophysics
Real consonant-vowel CV speech
Several types of additive noise
Large number of trials

>20 talkers and >20 listeners

Signal processing
AI-gram (crude cochlear model)

Frequency, time, intensity truncation 3d-DS
Short-Time Fourier Transform STFT modifications
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The CM and the elemental–event
Miller-Nicely’s 1955 articulation matrix Ph|s(SNR),
measured at [-18, -12, -6 shown, 0, 6, 12] dB SNR

UNVOICED VOICED
RESPONSE

S
T

IM
U

LU
S

NASAL

Confusion groups ≡ inhomogeneous elemental-events
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Average phone scores vs. SNR
Consonant chance performance is -20 dB-SNR in white
noise Phatak Allen, 2007
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Consonant Variability
Avg. Contant error Ph|s(SNR) strongly hetrogeneous!

NH listeners above chance at < –25 dB SNR in SWN
HI Pe(SNR) >> ANH Pe(SNR)
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Row of CM Ph|/t/

Utterance phone scores are hetrogeneous!
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Phone groups are due to shared sub-phonemic units
CV Morphs
Morphing sentences
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Row of CM Ph|/t/

Utterance phone scores are hetrogeneous!
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Phone groups are due to shared sub-phonemic units
CV Morphs DEMO
Morphing sentences DEMO

Allen/ASRU ‘09 – December 14, 2009 – p. 14



Model of human speech recognitionHSR
Research Goal:

Identify elemental HSR events

An event is defined as a perceptual feature
Event errors are measured by band errors ek

WordsSyllablesPhonesEventCochleaOutput:

Layer Layer

F
ilt

er
s

La
ye

r

La
ye

r

Analog objects Discrete objects???

s(t)

s

Ψ ”Back-end”

Measure: ek

Formula:

WAIk S = s3

= 0.82AIk = 1 − e1e2...e20∝ snrk dB

Φ ”Front-end”
Allen/ASRU ‘09 – December 14, 2009 – p. 15



Definition and use of theAI

The average error is: Pe(SNR) ≡
∏

k ek = 0.02AI

ek = 0.822AIk(snrk) cochlear kth band-error

AIk = log10(1 + 4snr2k)
1/3 band channel-capacity

AI ≡ AIk = 1
20

∑20
k=1 AIk,

WordsSyllablesPhonesEventCochleaOutput:

Layer Layer

F
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Analog objects Discrete objects???

s(t)

AIk ∝ snrk [dB] ek = 0.82AIk WScv = s2

s = 1 − e1e2...e20
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Fletcher’s Lowpass/Highpass result
The AI is based on the band-error product formula

Pe(snr, \fc) ≡ elp(snr, fc)× ehp(snr, fc)
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Human listeners as a Shannon Channel
The Channel capacity theorem gives the maximum
information rate as:

C ≡

∫

log2

(

1 + snr2(f)
)

df (1)

For a Maximum Entropy (MaxEnt) speech source, the
maximum information rate is determined by the SNR

The AI-gram is a closely related measure:
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III–Results (30 mins)

Examples and Demos of events
Plosive CV events
Fricative CV events

Conflicting cues

DEMOS:
Event isolation
Consonant morphing
Consonant enhancement
Conflicting cues within consonants
Sentence meaning modification
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m117/tE/ in speech-weighted noise
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m112/tE/ in speech-weighted noise
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Correlations of /t/ events

High correlation across all /t/’s in the database
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Masking of /tA/ timing cue

(i) Original /tA/ (j) Modified /tA/

When the /t/ burst is masked by noise, the perception
morphs to /p/

DEMO 4
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Truncation of /t A/
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This represents the normal hearing responses to a
truncated /tA/, from the start of the consonant

Morphing from /tA/ to /pA/ to /bA/ at 0 and 12 dB SNR

Similar to Furui 1986, and our extensive results
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Truncation of f101 /sa/
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truncated /sA/, from the start of the consonant

Morphing from /sA/ to /zA/ to /dA/ to /DA/

Duration seems to be a fricatives event
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Methods: 3d Deep Search(3d-DS)
3d Deep-Search (3d-DS) via truncation:

SNR truncation (i.e., masking)
Frequency truncation (High/Low-pass filtering)
Time truncation (Furui 1986)
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3d-DS Method /Sa/
Truncation in Time, Intensity and Frequency
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3d-DS Method /sa/

Truncation in Intensity, time and frequency
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3d-DS Method /ta/

Truncation in Intensity, time and frequency
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Enhancement of /tE/ event

(k) Original /tE/ (l) Modified /tE/

The sound is heard as /t/ again, we suppressed the
morph (see confusion patterns of slide 4)

METHODS: The /t/ burst is enhanced (14 dB) on the
quiet sound, then noise is added

DEMO
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Enhancement of /tA/ event

(m) Original /tA/ (n) Modified /tA/

The sound is heard as /t/ again, we increase /t/
recognition

METHODS: The /t/ burst is enhanced (14 dB) on the
quiet sound, then noise is added

DEMO
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Conclusion I
We have:

1 isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and
Fricatives /T, S, Ù, s, h, f/ and /z, Z, v, D/) + Vowels /o, E, I/

for many individual talkers

via new tools (AI-gram, Event-gram and 3d-DS)
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Conclusion I
We have:

1 isolated events for CV: Plosives /p, t, k/ and /b, d, g/ and
Fricatives /T, S, Ù, s, h, f/ and /z, Z, v, D/) + Vowels /o, E, I/

for many individual talkers

via new tools (AI-gram, Event-gram and 3d-DS)

2 shown that normal listeners use
across-frequency timing coincidences
duration and bandwidth

to discriminate consonants in noise

3 developed tools to
Morphed speech sounds
Decrease or increase intelligibility. Ex: /tA/, /tE/
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Conclusion II
We have shown:

1 the existance of conflicting cues
Thus MaxEnt consonants are NOT redundent

Allen/ASRU ‘09 – December 14, 2009 – p. 33



Conclusion II
We have shown:

1 the existance of conflicting cues
Thus MaxEnt consonants are NOT redundent

2 that the event threshold is abrupt (i.e., 6 dB)

Allen/ASRU ‘09 – December 14, 2009 – p. 33



Conclusion II
We have shown:

1 the existance of conflicting cues
Thus MaxEnt consonants are NOT redundent

2 that the event threshold is abrupt (i.e., 6 dB)

3 proven the AI band-product formula (yet again)

Allen/ASRU ‘09 – December 14, 2009 – p. 33



Conclusion II
We have shown:

1 the existance of conflicting cues
Thus MaxEnt consonants are NOT redundent

2 that the event threshold is abrupt (i.e., 6 dB)

3 proven the AI band-product formula (yet again)

4 why the AI works
Due to the frequency and SNR event distribution

Allen/ASRU ‘09 – December 14, 2009 – p. 33



Conclusion II
We have shown:

1 the existance of conflicting cues
Thus MaxEnt consonants are NOT redundent

2 that the event threshold is abrupt (i.e., 6 dB)

3 proven the AI band-product formula (yet again)

4 why the AI works
Due to the frequency and SNR event distribution

5 the role of forward and upward masking spread
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Conclusion III

This could lead to:

1 Improved automatic speech recognition front-ends
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Conclusion III

This could lead to:

1 Improved automatic speech recognition front-ends

2 The design of new hearing aids
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Question your basic assumptions

Thanks for your attention
http://hear.ai.uiuc.edu
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